图书介绍
实用偏微分方程 第4版 英文版【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

- (美)哈伯曼(Haberman,R.)著 著
- 出版社: 北京:机械工业出版社
- ISBN:7111159101
- 出版时间:2005
- 标注页数:769页
- 文件大小:28MB
- 文件页数:784页
- 主题词:
PDF下载
下载说明
实用偏微分方程 第4版 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Heat Equation1
1.1 Introduction1
1.2 Derivation of the Conduction of Heat in a One-Dimensional Rod2
Contents3
前言3
1.3 Boundary Conditions12
1.4 Equilibrium Temperature Distribution14
1.4.1 Prescribed Temperature14
1.4.2 Insulated Boundaries16
1.5 Derivation of the Heat Equation in Two or Three Dimensions21
2 Method of Separation of Variables35
2.1 Introduction35
2.2 Linearity36
2.3 Heat Equation with Zero Temperatures at Finite Ends38
2.3.1 Introduction38
2.3.2 Separation of Variables39
2.3.3 Time-Dependent Equation41
2.3.4 Boundary Value Problem42
2.3.5 Product Solutions and the Principle of Superposition47
2.3.6 Orthogonality of Sines50
2.3.7 Formulation,Solution,and Interpretation of an Example51
2.3.8 Summary54
2.4 Worked Examples with the Heat Equation:Other Boundary Value Problems59
2.4.1 Heat Conduction in a Rod with Insulated Ends59
2.4.2 Heat Conduction in a Thin Circular Ring63
2.4.3 Summary of Boundary Value Problems68
2.5.1 Laplace's Equation Inside a Rectangle71
2.5 Laplace's Equation:Solutions and Qualitative Properties71
2.5.2 Laplace's Equation for a Circular Disk76
2.5.3 Fluid Flow Past a Circular Cylinder (Lift)80
2.5.4 Qualitative Properties of Laplace's Equation83
3 Fourier Series89
3.1 Introduction89
3.2 Statement of Convergence Theorem91
3.3 Fourier Cosine and Sine Series96
3.3.1 Fourier Sine Series96
3.3.2 Fourier Cosine Series106
3.3.3 Representing f(x)by Both a Sine and Cosine Series108
3.3.4 Even and Odd Parts109
3.3.5 Continuous Fourier Series111
3.4 Term-by-Term Differentiation of Fourier Series116
3.5 Term-By-Term Integration of Fourier Series127
3.6 Complex Form of Fourier Series131
4 Wave Equation:Vibrating Strings and Membranes135
4.1 Introduction135
4.2 Derivation of a Vertically Vibrating String135
4.3 Boundary Conditions139
4.4 Vibrating String with Fixed Ends142
4.5 Vibrating Membrane149
4.6 Reflection and Refraction of Electromagnetic(Light)and Acoustic(Sound)Waves151
4.6.1 Snell's Law of Refraction152
4.6.2 Intensity(Amplitude)of Reflected and Refracted Waves154
4.6.3 Total Internal Refection155
5.1 Introduction157
5 Sturm-Liouville Eigenvalue Problems157
5.2 Examples158
5.2.1 Heat Flow in a Nonuniform Rod158
5.2.2 Circularly Symmetric Heat Flow159
5.3 Sturm-Liouville Eigenvalue Problems161
5.3.1 General Classification161
5.3.2 Regular Sturm-Liouville Eigenvalue Problem162
5.3.3 Example and Illustration of Theorems164
5.4 Worked Example:Heat Flow in a Nonuniform Rod without Sources170
5.5 Self-Adjoint Operators and Sturm-Liouville Eigenvalue Problems174
5.6 Rayleigh Quotient189
5.7 Worked Example:Vibrations of a Nonuniform String195
5.8 Boundary Conditions of the Third Kind198
5.9 Large Eigenvalues(Asymptotic Behavior)212
5.10 Approximation Properties216
6 Finite Difference Numerical Methods for Partial Differential Equations222
6.1 Introduction222
6.2 Finite Differences and Truncated Taylor Series223
6.3.2 A Partial Difference Equation229
6.3.1 Introduction229
6.3 Heat Equation229
6.3.3 Computations231
6.3.4 Fourier-von Neumann Stability Analysis235
6.3.5 Separation of Variables for Partial Difference Equations and Analytic Solutions of Ordinary Difference Equations241
6.3.6 Matrix Notation243
6.3.7 Nonhomogeneous Problems247
6.3.8 Other Numerical Schemesv247
6.3.9 Other Types of Boundary Conditions248
6.4 Two-Dimensional Heat Equation253
6.5 Wave Equation256
6.6 Laplace's Equation260
6.7 Finite Element Method267
6.7.1 Approximation with Nonorthogonal Functions(Weak Form of the Partial Differential Equation)267
6.7.2 The Simplest Triangular Finite Elements270
7 Higher Dimensional Partial Differential Equations275
7.1 Introduction275
7.2.1 Vibrating Membrane:Any Shape276
7.2 Separation of the Time Variable276
7.2.2 Heat Conduction:Any Region278
7.2.3 Summary279
7.3 Vibrating Rectangular Membrane280
7.4 Statements and Illustrations of Theorems289
for the Eigenvalue Problem ?2φ+?φ=0289
7.5 Green's Formula,Self-Adjoint Operators and Multidimensional Eigenvalue Problems295
7.6 Rayleigh Quotient and Laplace's Equation300
7.6.1 Rayleigh Quotient300
7.6.2 Time-Dependent Heat Equation and Laplace's Equation301
7.7 Vibrating Circular Membrane and Bessel Functions303
7.7.1 Introduction303
7.7.2 Separation of Variables303
7.7.3 Eigenvalue Problems(One Dimensional)305
7.7.4 Bessel's Differential Equation306
7.7.5 Singular Points and Bessel's Differential Equation307
7.7.6 Bessel Functions and Their Asymptotic Properties(near z=0)308
7.7.7 Eigenvalue Problem Involving Bessel Functions309
7.7.8 Initial Value Problem for a Vibrating Circular Membrane311
7.7.9 Circularly Symmetric Case313
7.8 More on Bessel Functions318
7.8.1 Qualitative Properties of Bessel Functions318
7.8.2 Asymptotic Formulas for the Eigenvalues319
7.8.3 Zeros of Bessel Functions and Nodal Curves320
7.8.4 Series Representation of Bessel Functions322
7.9 Laplace's Equation in a Circular Cylinder326
7.9.1 Introduction326
7.9.2 Separation of Variables326
7.9.3 Zero Temperature on the Lateral Sides and on the Bottom or Top328
7.9.4 Zero Temperature on the Top and Bottom330
7.9.5 Modified Bessel Functions332
7.10 Spherical Problems and Legendre Polynomials336
7.10.1 Introduction336
7.10.2 Separation of Variables and One-Dimensional Eigenvalue Problems337
7.10.3 Associated Legendre Functions and Legendre Polynomials338
7.10.4 Radial Eigenvalue Problems341
7.10.5 Product Solutions,Modes of Vibration,and the Initial Value Problem342
7.10.6 Laplace's Equation Inside a Spherical Cavity343
8 Nonhomogeneous Problems347
8.1 Introduction347
8.2 Heat Flow with Sources and Nonhomogeneous Boundary Conditions347
8.3 Method of Eigenfunction Expansion with Homogeneous Boundary Conditions(Differentiating Series of Eigenfunctions)354
8.4 Method of Eigenfunction Expansion Using Green's Formula(With or Without Homogeneous Boundary Conditions)359
8.5 Forced Vibrating Membranes and Resonance364
8.6 Poisson's Equation372
9.2 One-dimensional Heat Equation380
9.1 Introduction380
9 Green's Functions for Time-Independent Problems380
9.3 Green's Functions for Boundary Value Problems for Ordinary Dif-ferential Equations385
9.3.1 One-Dimensional Steady-State Heat Equation385
9.3.2 The Method of Variation of Parameters386
9.3.3 The Method of Eigenfunction Expansion for Green's Functions389
9.3.4 The Dirac Delta Function and Its Relationship to Green's Functions391
9.3.5 Nonhomogeneous Boundary Conditions397
9.3.6 Summary399
9.4.1 Introduction405
9.4 Fredholm Alternative and Generalized Green's Functions405
9.4.2 Fredholm Alternative407
9.4.3 Generalized Green's Functions409
9.5 Green's Functions for Poisson's Equation416
9.5.1 Introduction416
9.5.2 Multidimensional Dirac Delta Function and Green's Functions417
9.5.3 Green's Functions by the Method of Eigenfunction Expansion and the Fredholm Alternative418
9.5.4 Direct Solution of Green's Functions(One-Dimensional Eigenfunctions)420
9.5.5 Using Green's Functions for Problems with Nonhomogeneous Boundary Conditions422
9.5.6 Infinite Space Green's Functions423
9.5.7 Green's Functions for Bounded Domains Using Infinite Space Green's Functions426
9.5.8 Green's Functions for a Semi-Infinite Plane(y>0)Using Infinite Space Green's Functions:The Method of Images427
9.5.9 Green's Functions for a Circle:The Method of Images430
9.6 Perturbed Eigenvalue Problens438
9.6.1 Introduction438
9.6.2 Mathematical Example438
9.6.3 Vibrating Nearly Circular Membrane440
9.7 Summary443
10.2 Heat Equation on an Infinite Domain445
10 Infinite Domain Problems:Fourier Transform Solutions of Partial Differential Equations445
10.1 Introduction445
10.3 Fourier Transform Pair449
10.3.1 Motivation from Fourier Series Identity449
10.3.2 Fourier Transform450
10.3.3 Inverse Fourier Transform of a Gaussian451
10.4 Fourier Transform and the Heat Equation459
10.4.1 Heat Equation459
10.4.2 Fourier Transforming the Heat Equation:Transforms of Derivatives464
10.4.3 Convolution Theorem466
10.4.4 Summary of Properties ofthe Fourier Transform469
10.5 Fourier Sine and Cosine Transforms:The Heat Equation on Semi-Infinite Intervals471
10.5.1 Introduction471
10.5.2 Heat Equation on a Semi-Infinite Interval Ⅰ471
10.5.3 Fourier Sine and Cosine Transforms473
10.5.4 Transforms of Derivatives474
10.5.5 Heat Equation on a Semi-Infinite Interval Ⅱ476
10.5.6 Tables of Fourier Sine and Cosine Transforms479
10.6.1 One-Dimensional Wave Equation on an Infinite Interval482
10.6 Worked Examples Using Transforms482
10.6.2 Laplace's Equation in a Semi-Infinite Strip484
10.6.3 Laplace's Equation in a Half-Plane487
10.6.4 Laplace's Equation in a Quarter-Plane491
10.6.5 Heat Equation in a Plane(Two-Dimensional Fourier Transforms)494
10.6.6 Table of Double-Fourier Transforms498
10.7 Scattering and Inverse Scattering503
11.2 Green's Functions for the Wave Equation508
11.2.1 Introduction508
11 Green's Functions for Wave and Heat Equations508
11.1 Introduction508
11.2.2 Green's Formula510
11.2.3 Reciprocity511
11.2.4 Using the Green's Function513
11.2.5 Green's Function for the Wave Equation515
11.2.6 Alternate Differential Equation for the Green's Function515
11.2.7 Infinite Space Green's Function for the One-Dimensional Wave Equation and d'Alembert's Solution516
11.2.8 Infinite Space Green's Function for the Three-Dimensional Wave Equation(Huygens'Principle)518
11.2.9 Two-Dimensional Infinite Space Green's Function520
11.2.10 Summary520
11.3 Green's Functions for the Heat Equation523
11.3.1 Introduction523
11.3.2 Non-Self-Adjoint Nature of the Heat Equation524
11.3.3 Green's Formulav525
11.3.5 Reciprocity527
11.3.4 Adjoint Green's Function527
11.3.6 Representation of the Solution Using Green's Functions528
11.3.7 Alternate Differential Equation for the Green's Function530
11.3.8 Infinite Space Green's Function for the Diffusion Equation530
11.3.9 Green's Function for the Heat Equation(Semi-Infinite Domain)532
11.3.10 Green's Function for the Heat Equation(on a Finite Region)533
12 The Method of Characteristics for Linear and Quasilinear Wave Equations536
12.1 Introduction536
12.2 Characteristics for First-Order Wave Equations537
12.2.1 Introduction537
12.2.2 Method of Characteristics for First-Order Partial Differential Equations538
12.3 Method of Characteristics for the One-Dimensional Wave Equation543
12.3.1 General Solution543
12.3.2 Initial Value Problem(Infinite Domain)545
12.3.3 D'alembert's Solution549
12.4 Semi-Infinite Strings and Reflections552
12.5 Method of Characteristics for a Vibrating String of Fixed Length557
12.6 The Method of Characteristics for Quasilinear Partial Differential Equations561
12.6.1 Method of Characteristics561
12.6.2 Traffic Flow562
12.6.3 Method of Characteristics (Q=0)564
12.6.4 Shock Waves567
12.6.5 Quasilinear Example579
12.7 First-Order Nonlinear Partial Differential Equations585
12.7.1 Eikonal Equation Derived from the Wave Equation585
12.7.2 Solving the Eikonal Equation in Uniform Media and Reflected Waves586
12.7.3 First-Order Nonlinear Partial Differential Equations589
13.1 Introduction591
13 Laplace Transform Solution of Partial Differential Equations591
13.2 Properties of the Laplace Transform592
13.2.1 Introduction592
13.2.2 Singularities of the Laplace Transform592
13.2.3 Transforms of Derivatives596
13.2.4 Convolution Theorem597
13.3 Green's Functions for Initial Value Problems for Ordinary Differential Equations601
13.4 A Signal Problem for the Wave Equation603
13.5 A Signal Problem for a Vibrating String of Finite Length606
13.6 The Wave Equation and its Green's Function610
13.7 Inversion of Laplace Transforms Using Contour Integrals in the Complex Plane613
13.8 Solving the Wave Equation Using Laplace Transforms (with Complex Variables)618
14 Dispersive Waves:Slow Variations,Stability,Nonlinearity,and Perturbation Methods621
14.1 Introduction621
14.2 Dispersive Waves and Group Velocity622
14.2.1 Traveling Waves and the Dispersion Relation622
14.2.2 Group Velocity Ⅰ625
14.3 Wave Guides628
14.3.1 Response to Concentrated Periodic Sources with Frequency ωf630
14.3.2 Green's Function If Mode Propagates631
14.3.3 Green's Function If Mode Does Not Propagate632
14.3.4 Design Considerations632
14.4 Fiber Optics634
14.5 Group Velocity Ⅱ and the Method of Stationary Phase638
14.5.1 Method of Stationary Phase639
14.5.2 Application to Linear Dispersive Waves641
14.6 Slowly Varying Dispersive Waves(Group Velocity and Caustics)645
14.6.1 Approximate Solutions of Dispersive Partial Differential Equations645
14.6.2 Formation of a Caustic648
14.7 Wave Envelope Equations(Concentrated Wave Number)654
14.7.1 Schr?dinger Equation655
14.7.2 Linearized Korteweg-de Vries Equation657
14.7.3 Nonlinear Dispersive Waves:Korteweg-deVries Equation659
14.7.4 Solitons and Inverse Scattering662
14.7.5 Nonlinear Schr?dinger Equation664
14.8 Stability and Instability669
14.8.1 Brief Ordinary Differential Equations and Bifurcation Theory669
14.8.2 Elementary Example of a Stable Equilibrium for a Partial Differential Equation676
14.8.3 Typical Unstable Equilibrium for a Partial Differential Equation and Pattern Formation677
14.8.4 Ill posed Problems679
14.8.5 Slightly Unstable Dispersive Waves and the Linearized Complex Ginzburg-Landau Equation680
14.8.6 Nonlinear Complex Ginzburg-Landau Equation682
14.8.7 Long Wave Instabilities688
14.8.8 Pattern Formation for Reaction-Diffusion Equations and the Turing Instability689
14.9 Singular Perturbation Methods:Multiple Scales696
14.9.1 Ordinary Differential Equation:Weakly Nonlinearly Damped Oscillator696
14.9.2 Ordinary Differential Equation:Slowly Varying Oscillator699
14.9.3 Slightly Unstable Partial Differential Equation on Fixed Spatial Domain703
14.9.4 Slowly Varying Medium for the Wave Equation705
14.9.5 Slowly Varying Linear Dispersive Waves(Including Weak Nonlinear Effects)708
14.10 Singular Perturbation Methods:Boundary Layers Method of Matched Asymptotic Expansions713
14.10.1 Boundary Layer in an Ordinary Differential Equation713
14.10.2 Diffusion of a Pollutant Dominated by Convection719
Bibliography726
Answers to Starred Exercises731
Index751
热门推荐
- 2009515.html
- 2788563.html
- 2731847.html
- 1815708.html
- 779615.html
- 3482224.html
- 3170227.html
- 3562761.html
- 1441753.html
- 2780771.html
- http://www.ickdjs.cc/book_2716437.html
- http://www.ickdjs.cc/book_1372496.html
- http://www.ickdjs.cc/book_3609795.html
- http://www.ickdjs.cc/book_2729349.html
- http://www.ickdjs.cc/book_1500991.html
- http://www.ickdjs.cc/book_2686181.html
- http://www.ickdjs.cc/book_1478232.html
- http://www.ickdjs.cc/book_3643788.html
- http://www.ickdjs.cc/book_2255753.html
- http://www.ickdjs.cc/book_3712265.html