图书介绍
Graph Theory Third Edition【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

- Reinhard Diestel 著
- 出版社: Springer
- ISBN:3540261826
- 出版时间:2005
- 标注页数:416页
- 文件大小:44MB
- 文件页数:435页
- 主题词:
PDF下载
下载说明
Graph Theory Third EditionPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.The Basics1
1.1 Graphs2
1.2 The degree of a vertex5
1.3 Paths and cycles6
1.4 Connectivity10
1.5 Trees and forests13
1.6 Bipartite graphs17
1.7 Contraction and minors18
1.8 Euler tours22
1.9 Some linear algebra23
1.10 Other notions of graphs28
Exercises30
Notes32
2.Matching,Covering and Packing33
2.1 Matching in bipartite graphs34
2.2 Matching in general graphs(*)39
2.3 Packing and covering44
2.4 Tree-packing and arboricity46
2.5 Path covers49
Exercises51
Notes53
3.Connectivity55
3.1 2-Connected graphs and subgraphs55
3.2 The structure of 3-connected graphs(*)57
3.3 Menger’s theorem62
3.4 Mader’s theorem67
3.5 Linking pairs of vertices(*)69
Exercises78
Notes80
4.Planar Graphs83
4.1 Topological prerequisites84
4.2 Plane graphs86
4.3 Drawings92
4.4 Planar graphs:Kuratowski’s theorem96
4.5 Algebraic planarity criteria101
4.6 Plane duality103
Exercises106
Notes109
5.Colouring111
5.1 Colouring maps and planar graphs112
5.2 Colouring vertices114
5.3 Colouring edges119
5.4 List colouring121
5.5 Perfect graphs126
Exercises133
Notes136
6.Flows139
6.1 Circulations(*)140
6.2 Flows in networks141
6.3 Group-valued flows144
6.4 k-Flows for small k149
6.5 Flow-colouring duality152
6.6 Tntte’s flow conjectures156
Exercises160
Notes161
7.Extremal Graph Theory163
7.1 Subgraphs164
7.2 Minors(*)169
7.3 Hadwiger’s conjecture172
7.4 Szemeredi’s regularity lemma175
7.5 Applying the regularity lemma183
Exercises189
Notes192
8.Infinite Graphs195
8.1 Basic notions,facts and techniques196
8.2 Paths,trees,and ends(*)204
8.3 Homogeneous and universal graphs212
8.4 Connectivity and matching216
8.5 The topological end space226
Exercises237
Notes244
9.Ramsey Theory for Graphs251
9.1 Ramsey’s original theorems252
9.2 Ramsey numbers(*)255
9.3 Induced Ramsey theorems258
9.4 Ramsey properties and connectivity(*)268
Exercises271
Notes272
10.Hamilton Cycles275
10.1 Simple sufficient conditions275
10.2 Hamilton cycles and degree sequences278
10.3 Hamilton cycles in the square of a graph281
Exercises289
Notes290
11.Random Graphs293
11.1 The notion of a random graph294
11.2 The probabilistic method299
11.3 Properties of almost all graphs302
11.4 Threshold functions and second moments306
Exercises312
Notes313
12.Minors,Trees and WQO315
12.1 Well-quasi-ordering316
12.2 The graph minor theorem for trees317
12.3 Tree-decompositions319
12.4 Tree-width and forbidden minors327
12.5 The graph minor theorem(*)341
Exercises350
Notes354
A.Infinite sets357
B.Surfaces361
Hints for all the exercises369
Index393
Symbol index409
热门推荐
- 3655683.html
- 2747946.html
- 2990603.html
- 3256160.html
- 3867796.html
- 1597969.html
- 2344184.html
- 2676737.html
- 268086.html
- 3109931.html
- http://www.ickdjs.cc/book_274325.html
- http://www.ickdjs.cc/book_650082.html
- http://www.ickdjs.cc/book_1359976.html
- http://www.ickdjs.cc/book_981496.html
- http://www.ickdjs.cc/book_2595347.html
- http://www.ickdjs.cc/book_46423.html
- http://www.ickdjs.cc/book_2510140.html
- http://www.ickdjs.cc/book_3740606.html
- http://www.ickdjs.cc/book_2696299.html
- http://www.ickdjs.cc/book_1847733.html