图书介绍

FIBER-OPTIC COMMUNICATION SYSTEMS FOURTH EDITION【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

FIBER-OPTIC COMMUNICATION SYSTEMS FOURTH EDITION
  • 出版社: WILEY
  • ISBN:0470505117
  • 出版时间:2010
  • 标注页数:608页
  • 文件大小:153MB
  • 文件页数:623页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

FIBER-OPTIC COMMUNICATION SYSTEMS FOURTH EDITIONPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Historical Perspective1

1.1.1 Need for Fiber-Optic Communications2

1.1.2 Evolution of Lightwave Systems4

1.2 Basic Concepts8

1.2.1 Analog and Digital Signals8

1.2.2 Channel Multiplexing11

1.2.3 Modulation Formats13

1.3 Optical Communication Systems16

1.4 Lightwave System Components17

1.4.1 Optical Fibers as a Communication Channel18

1.4.2 Optical Transmitters18

1.4.3 Optical Receivers19

Problems20

References21

2 Optical Fibers24

2.1 Geometrical-Optics Description24

2.1.1 Step-Index Fibers25

2.1.2 Graded-Index Fibers27

2.2 Wave Propagation29

2.2.1 Maxwell's Equations29

2.2.2 Fiber Modes31

2.2.3 Single-Mode Fibers34

2.3 Dispersion in Single-Mode Fibers38

2.3.1 Group-Velocity Dispersion39

2.3.2 Material Dispersion40

2.3.3 Waveguide Dispersion41

2.3.4 Higher-Order Dispersion43

2.3.5 Polarization-Mode Dispersion44

2.4 Dispersion-Induced Limitations46

2.4.1 Basic Propagation Equation46

2.4.2 Chirped Gaussian Pulses47

2.4.3 Limitations on the Bit Rate50

2.4.4 Fiber Bandwidth54

2.5 Fiber Losses55

2.5.1 Attenuation Coefficient55

2.5.2 Material Absorption57

2.5.3 Rayleigh Scattering58

2.5.4 Waveguide Imperfections58

2.6 Nonlinear Optical Effects59

2.6.1 Stimulated Light Scattering59

2.6.2 Nonlinear Phase Modulation64

2.6.3 Four-Wave Mixing67

2.7 Fiber Design and Fabrication67

2.7.1 Silica Fibers68

2.7.2 Plastic Optical Fibers71

2.7.3 Cables and Connectors72

Problems74

References75

3 Optical Transmitters79

3.1 Semiconductor Laser Physics79

3.1.1 Spontaneous and Stimulated Emissions80

3.1.2 Nonradiative Recombination81

3.1.3 Optical Gain82

3.1.4 Feedback and Laser Threshold84

3.1.5 Longitudinal Modes85

3.1.6 Laser Structures86

3.2 Single-Mode Semiconductor Lasers87

3.2.1 Distributed Feedback Lasers88

3.2.2 Coupled-Cavity Semiconductor Lasers90

3.2.3 Tunable Semiconductor Lasers91

3.2.4 Vertical-Cavity Surface-Emitting Lasers93

3.3 Laser Characteristics94

3.3.1 CW Characteristics95

3.3.2 Modulation Bandwidth98

3.3.3 Relative Intensity Noise100

3.3.4 Spectral Linewidth102

3.4 Optical Signal Generation104

3.4.1 Direct Modulation104

3.4.2 External Modulation106

3.5 Light-Emitting Diodes110

3.5.1 CW Characteristics110

3.5.2 Modulation Response112

3.5.3 LED Structures113

3.6 Transmitter Design115

3.6.1 Source-Fiber Coupling115

3.6.2 Driving Circuitry118

3.6.3 Reliability and Packaging119

Problems121

References122

4 Optical Receivers128

4.1 Basic Concepts128

4.1.1 Responsivity and Quantum Efficiency128

4.1.2 Rise Time and Bandwidth130

4.2 Common Photodetectors131

4.2.1 p-n Photodiodes132

4.2.2 p-i-n Photodiodes133

4.2.3 Avalanche Photodiodes137

4.2.4 MSM Photodetectors143

4.3 Receiver Design144

4.3.1 Front End144

4.3.2 Linear Channel145

4.3.3 Decision Circuit147

4.3.4 Integrated Receivers148

4.4 Receiver Noise151

4.4.1 Noise Mechanisms151

4.4.2 p-i-n Receivers153

4.4.3 APD Receivers154

4.5 Coherent Detection158

4.5.1 Local Oscillator158

4.5.2 Homodyne Detection159

4.5.3 Heterodyne Detection160

4.5.4 Signal-to-Noise Ratio160

4.6 Receiver Sensitivity161

4.6.1 Bit-Error Rate162

4.6.2 Minimum Received Power164

4.6.3 Quantum Limit of Photodetection166

4.7 Sensitivity Degradation167

4.7.1 Extinction Ratio167

4.7.2 Intensity Noise169

4.7.3 Timing Jitter171

4.8 Receiver Performance173

Problems175

References177

5 Lightwave Systems182

5.1 System Architectures182

5.1.1 Point-to-Point Links182

5.1.2 Distribution Networks184

5.1.3 Local-Area Networks185

5.2 Design Guidelines187

5.2.1 Loss-Limited Lightwave Systems187

5.2.2 Dispersion-Limited Lightwave Systems189

5.2.3 Power Budget190

5.2.4 Rise-Time Budget191

5.3 Long-Haul Systems194

5.3.1 Performance-Limiting Factors194

5.3.2 Terrestrial Lightwave Systems196

5.3.3 Undersea Lightwave Systems198

5.4 Sources of Power Penalty200

5.4.1 Modal Noise201

5.4.2 Mode-Partition Noise202

5.4.3 Reflection Feedback and Noise204

5.4.4 Dispersive Pulse Broadening208

5.4.5 Frequency Chirping209

5.4.6 Eye-Closure Penalty210

5.5 Forward Error Correction212

5.5.1 Error-Correcting Codes212

5.5.2 Coding Gain213

5.6 Computer-Aided Design214

Problems216

References218

6 Multichannel Systems223

6.1 WDM Lightwave Systems223

6.1.1 High-Capacity Point-to-Point Links224

6.1.2 Wide-Area and Metro-Area Networks228

6.1.3 Multiple-Access WDM Networks230

6.2 WDM Components232

6.2.1 Tunable Optical Filters233

6.2.2 Multiplexers and Demultiplexers238

6.2.3 Add-Drop Multiplexers and Filters242

6.2.4 Star Couplers244

6.2.5 Wavelength Routers246

6.2.6 WDM Transmitters and Receivers248

6.3 System Performance Issues251

6.3.1 Heterowavelength Linear Crosstalk251

6.3.2 Homowavelength Linear Crosstalk253

6.3.3 Nonlinear Raman Crosstalk255

6.3.4 Stimulated Brillouin Scattering257

6.3.5 Cross-Phase Modulation259

6.3.6 Four-Wave Mixing261

6.3.7 Other Design Issues262

6.4 Time-Division Multiplexing264

6.4.1 Channel Multiplexing264

6.4.2 Channel Demultiplexing266

6.4.3 System Performance268

6.5 Subcarrier Multiplexing269

6.5.1 Analog and Digital SCM Systems270

6.5.2 Multiwavelength SCM Systems273

6.5.3 Orthogonal Frequency-Division multiplexing275

6.6 Code-Division Multiplexing277

6.6.1 Time-Domain Encoding278

6.6.2 Frequency-Domain Encoding280

6.6.3 Frequency Hopping281

Problems283

References285

7 Loss Management295

7.1 Compensation of Fiber Losses295

7.1.1 Periodic Amplification Scheme296

7.1.2 Lumped Versus Distributed Amplification298

7.1.3 Bidirectional Pumping Scheme299

7.2 Erbium-Doped Fiber Amplifiers300

7.2.1 Pumping and Gain Spectrum300

7.2.2 Two-Level Model302

7.2.3 Amplifier Noise305

7.2.4 Multichannel Amplification307

7.3 Raman Amplifiers310

7.3.1 Raman Gain and Bandwidth310

7.3.2 Raman-Induced Signal Gain312

7.3.3 Multiple-Pump Raman Amplification313

7.3.4 Noise Figure of Raman Amplifiers316

7.4 Optical Signal-To-Noise Ratio318

7.4.1 Lumped Amplification318

7.4.2 Distributed Amplification319

7.5 Electrical Signal-To-Noise Ratio321

7.5.1 ASE-Induced Current Fluctuations321

7.5.2 Impact of ASE on SNR322

7.5.3 Noise Buildup in an Amplifier Chain323

7.6 Receiver Sensitivity and Q Factor325

7.6.1 Bit-Error Rate325

7.6.2 Relation between Q Factor and Optical SNR327

7.7 Role of Dispersive and Nonlinear Effects328

7.7.1 Noise Growth through Modulation Instability328

7.7.2 Noise-Induced Signal Degradation330

7.7.3 Noise-Induced Energy Fluctuations332

7.7.4 Noise-Induced Timing Jitter333

7.8 Periodically Amplified Lightwave Systems334

7.8.1 Numerical Approach335

7.8.2 Optimum Launched Power337

Problems339

References340

8 Dispersion Management345

8.1 Dispersion Problem and Its Solution345

8.2 Dispersion-Compensating Fibers347

8.2.1 Conditions for Dispersion Compensation348

8.2.2 Dispersion Maps349

8.2.3 DCF Designs350

8.3 Fiber Bragg Gratings354

8.3.1 Constant-Period Gratings354

8.3.2 Chirped Fiber Gratings356

8.3.3 Sampled Gratings360

8.4 Dispersion-Equalizing Filters363

8.4.1 Gires-Tournois Filters363

8.4.2 Mach-Zehnder Filters366

8.4.3 Other All-Pass Filters367

8.5 Optical Phase Conjugation369

8.5.1 Principle of Operation369

8.5.2 Compensation of Self-Phase Modulation370

8.5.3 Generation of Phase-Conjugated Signal371

8.6 Channels at High Bit Rates375

8.6.1 Tunable Dispersion Compensation375

8.6.2 Higher-Order Dispersion Management379

8.6.3 PMD Compensation382

8.7 Electronic Dispersion Compensation385

8.7.1 Basic Idea behind GVD Precompensation385

8.7.2 Precompensation at the Transmitter386

8.7.3 Dispersion Compensation at the Receiver392

Problems397

References399

9 Control of Nonlinear Effects407

9.1 Impact of Fiber Nonlinearity407

9.1.1 System Design Issues408

9.1.2 Semianalytic Approach411

9.1.3 Soliton and Pseudo-linear Regimes414

9.2 Solitons in Optical Fibers416

9.2.1 Properties of Optical Solitons416

9.2.2 Loss-Managed Solitons419

9.3 Dispersion-Managed Solitons423

9.3.1 Dispersion-Decreasing Fibers423

9.3.2 Periodic Dispersion Maps424

9.3.3 Design Issues427

9.3.4 Timing Jitter430

9.3.5 Control of Timing Jitter432

9.4 Pseudo-linear Lightwave Systems434

9.4.1 Origin of Intrachannel Nonlinear Effects435

9.4.2 Intrachannel Cross-Phase Modulation437

9.4.3 Intrachannel Four-Wave Mixing441

9.5 Control of Intrachannel Nonlinear Effects444

9.5.1 Optimization of Dispersion Maps444

9.5.2 Phase-Alternation Techniques448

9.5.3 Polarization Bit Interleaving449

Problems451

References453

10 Advanced Lightwave Systems459

10.1 Advanced Modulation Formats460

10.1.1 Encoding of Optical Signals460

10.1.2 Amplitude and Phase Modulators462

10.2 Demodulation Schemes464

10.2.1 Synchronous Heterodyne Demodulation464

10.2.2 Asynchronous Heterodyne Demodulation466

10.2.3 Optical Delay Demodulation467

10.3 Shot Noise and Bit-Error Rate470

10.3.1 Synchronous Heterodyne Receivers470

10.3.2 Asynchronous Heterodyne Receivers472

10.3.3 Receivers with Delay Demodulation475

10.4 Sensitivity Degradation Mechanisms476

10.4.1 Intensity Noise of Lasers476

10.4.2 Phase Noise of Lasers478

10.4.3 Signal Polarization Fluctuations480

10.4.4 Noise Added by Optical Amplifiers483

10.4.5 Fiber Dispersion484

10.5 Impact of Nonlinear Effects485

10.5.1 Nonlinear Phase Noise486

10.5.2 Effect of Fiber Dispersion489

10.5.3 Compensation of Nonlinear Phase Noise490

10.6 Recent Progress494

10.6.1 Systems with the DBPSK format494

10.6.2 Systems with the DQPSK format496

10.6.3 QAM and Related formats497

10.6.4 Systems Employing Orthogonal FDM499

10.7 Ultimate Channel Capacity501

Problems503

References504

11 Optical Signal Processing511

11.1 Nonlinear Techniques and Devices511

11.1.1 Nonlinear Optical Loop Mirrors512

11.1.2 Parametric Amplifiers516

11.1.3 Nonlinear Effects in Semiconductor Optical Amplifiers522

11.1.4 Bistable Optical Devices526

11.2 All-Optical Flip-Flops529

11.2.1 Semiconductor Lasers and SOAs529

11.2.2 Coupled Semiconductor Lasers and SOAs531

11.3 Wavelength Converters533

11.3.1 XPM-Based Wavelength Converters533

11.3.2 FWM-Based Wavelength Converters537

11.3.3 Passive Semiconductor Waveguides540

11.3.4 SOA-Based Wavelength Converters542

11.4 Ultrafast Optical Switching544

11.4.1 Time-Domain Demultiplexing545

11.4.2 Data-Format Conversion549

11.4.3 Packet Switching552

11.5 Optical Regenerators553

11.5.1 Fiber-Based 2R Regenerators553

11.5.2 SOA-Based 2R Regenerators559

11.5.3 Fiber-Based 3R Regenerators560

11.5.4 SOA-Based 3R Regenerators562

11.5.5 Regeneration of Phase-Encoded Signals565

Problems568

References569

A System of Units578

B Acronyms580

C General Formula for Pulse Broadening584

D Software Package587

Index589

热门推荐