图书介绍
Complex Variables and The Laplace Transform For Engineers【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

- 著
- 出版社: Inc.
- ISBN:
- 出版时间:1961
- 标注页数:475页
- 文件大小:71MB
- 文件页数:488页
- 主题词:
PDF下载
下载说明
Complex Variables and The Laplace Transform For EngineersPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1.Conceptual Structure of System Analysis1
1-1 Introduction1
1-2 Classical Steady-state Response of a Linear System1
1-3 Characterization of the System Function as a Function of a Complex Variable2
1-4 Fourier Series5
1-5 Fourier Integral6
1-6 The Laplace Integral8
1-7 Frequency,and the Generalized Frequency Variable10
1-8 Stability12
1-9 Convolution-type Integrals12
1-10 Idealized Systems13
1-11 Linear Systems with Time-varying Parameters14
1-12 Other Systems14
Problems14
Chapter 2.Introduction to Function Theory19
2-1 Introduction19
2-2 Definition of a Function24
2-3 Limit,Continuity26
2-4 Derivative of a Function29
2-5 Definition of Regularity,Singular Points,and Analyticity31
2-6 The Cauchy-Riemann Equations33
2-7 Transcendental Functions35
2-8 Harmonic Functions41
Problems42
Chapter 3.Conformal Mapping46
3-1 Introduction46
3-2 Some Simple Examples of Transformations46
3-3 Practical Applications52
3-4 The Function w=1/s56
3-5 The Function w=1/2(s+1/s)57
3-6 The Exponential Function61
3-7 Hyperbolic and Trigonometric Functions62
3-8 The Point at Infinity;The Riemann Sphere64
3-9 Further Properties of the Reciprocal Function66
3-10 The Bilinear Transformation70
3-11 Conformal Mapping73
3-12 Solution of Two-dimensional-field Problems77
Problems81
Chapter 4.Integration85
4-1 Introduction85
4-2 Some Definitions85
4-3 Integration88
4-4 Upper Bound of a Contour Integral94
4-5 Cauchy Integral Theorem94
4-6 Independence of Integration Path98
4-7 Significance of Connectivity99
4-8 Primitive Function(Antiderivative)100
4-9 The Logarithm102
4-10 Cauchy Integral Formulas105
4-11 Implications of the Cauchy Integral Formulas108
4-12 Morera's Theorem109
4-13 Use of Primitive Function to Evaluate a Contour Integral109
Problems110
Chapter 5.Infinite Series116
5-1 Introduction116
5-2 Series of Constants116
5-3 Series of Functions120
5-4 Integration of Series124
5-5 Convergence of Power Series125
5-6 Properties of Power Series128
5-7 Taylor Series129
5-8 Laurent Series134
5-9 Comparison of Taylor and Laurent Series136
5-10 Laurent Expansions about a Singular Point139
5-11 Poles and Essential Singularities;Residues142
5-12 Residue Theorem145
5-13 Analytic Continuation147
5-14 Classification of Single-valued Functions152
5-15 Partial-fraction Expansion153
5-16 Partial-fraction Expansion of Meromorphic Functions(Mittag-Leffler Theorem)157
Problems162
Chapter 6.Multivalued Functions169
6-1 Introduction169
6-2 Examples of Inverse Functions Which Are Multivalued170
6-3 The Logarithmic Function176
6-4 Differentiability of Multivalued Functions177
6-5 Integration around a Branch Point180
6-6 Position of Branch Cut185
6-7 The Function w=s+(s2-1)1/2185
6-8 Locating Branch Points186
6-9 Expansion of Multivalued Functions in Series188
6-10 Application to Root Locus190
Problems197
Chapter 7.Some Useful Theorems201
7-1 Introduction201
7-2 Properties of Real Functions201
7-3 Gauss Mean-value Theorem(and Related Theorems)205
7-4 Principle of the Maximum and Minimum207
7-5 An Application to Network Theory208
7-6 The Index Principle211
7-7 Applications of the Index Principle,Nyquist Criterion213
7-8 Poisson's Integrals215
7-9 Poisson's Integrals Transformed to the Imaginary Axis220
7-10 Relationships between Real and Imaginary Parts,for Real Frequencies223
7-11 Gain and Angle Functions229
Problems231
Chapter 8.Theorems on Real Integrals234
8-1 Introduction234
8-2 Piecewise Continuous Functions of a Real Variable234
8-3 Theorems and Definitions for Real Integrals236
8-4 Improper Integrals237
8-5 Almost Piecewise Continuous Functions240
8-6 Iterated Integrals of Functions of Two Variables(Finite Limits)242
8-7 Iterated Integrals of Functions of Two Variables(Infinite Limits)247
8-8 Limit under the Integral for Improper Integrals250
8-9 M Test for Uniform Convergence of an Improper Integral of the First Kind251
8-10 A Theorem for Trigonometric Integrals252
8-11 Two Theorems on Integration over Large Semicircles254
8-12 Evaluation of Improper Real Integrals by Contour Integration259
Problems263
Chapter 9.The Fourier Integral268
9-1 Introduction268
9-2 Derivation of the Fourier Integral Theorem268
9-3 Some Properties of the Fourier Transform273
9-4 Remarks about Uniqueness and Symmetry273
9-5 Parseval's Theorem279
Problems282
Chapter 10.The Laplace Transform285
10-1 Introduction285
10-2 The Two-sided Laplace Transform285
10-3 Functions of Exponential Order287
10-4 The Laplace Integral for Functions of Exponential Order288
10-5 Convergence of the Laplace Integral for the General Case289
10-6 Further Ideas about Uniform Convergence293
10-7 Convergence of the Two-sided Laplace Integral295
10-8 The One-and Two-sided Laplace Transforms297
10-9 Significance of Analytic Continuation in Evaluating the Laplace Integral298
10-10 Linear Combinations of Laplace Transforms299
10-11 Laplace Transforms of Some Typical Functions300
10-12 Elementary Properties of F(s)306
10-13 The Shifting Theorems309
10-14 Laplace Transform of the Derivative of f(t)311
10-15 Laplace Transform of the Integral of a Function312
10-16 Initial-and Final-value Theorems314
10-17 Nonuniqueness of Function Pairs for the Two-sided Laplace Transform315
10-18 The Inversion Formula318
10-19 Evaluation of the Inversion Formula322
10-20 Evaluating the Residues(The Heaviside Expansion Theorem)324
10-21 Evaluating the Inversion Integral When F(s)Is Multivalued326
Problems328
Chapter 11.Convolution Theorems336
11-1 Introduction336
11-2 Convolution in the t Plane(Fourier Transform)337
11-3 Convolution in the t Plane(Two-sided Laplace Transform)338
11-4 Convolution in the t Plane(One-sided Transform)342
11-5 Convolution in the s Plane(One-sided Transform)343
11-6 Application of Convolution in the s Plane to Amplitude Modulation347
11-7 Convolution in the 3 Plane(Two-sided Transform)349
Problems350
Chapter 12.Further Properties of the Laplace Transform353
12-1 Introduction353
12-2 Behavior of F(s)at Infinity353
12-3 Functions of Exponential Type357
12-4 A Special Class of Piecewise Continuous Functions362
12-5 Laplace Transform of the Derivative of a Piecewise Continuous Function of Exponential Order367
12-6 Approximation of f(t)by Polynomials370
12-7 Initial-and Final-value Theorems372
12-8 Conditions Sufficient to Make F(s)a Laplace Transform374
12-9 Relationships between Properties of f(t) and F(s)376
Problems378
Chapter 13.Solution of Ordinary Linear Equations with Constant Coefficients381
13-1 Introduction381
13-2 Existence of a Laplace Transform Solution for a Second-order Equation381
13-3 Solution of Simultaneous Equations384
13-4 The Natural Response388
13-5 Stability390
13-6 The Forced Response390
13-7 Illustrative Examples391
13-8 Solution for the Integral Function395
13-9 Sinusoidal Steady-state Response397
13-10 Immittance Functions398
13-11 Which Is the Driving Function?400
13-12 Combination of Immittance Functions400
13-13 Helmholtz Theorem403
13-14 Appraisal of the Immittance Concept and the Helmholtz Theorem405
13-15 The System Function406
Problems407
Chapter 14.Impulse Functions410
14-1 Introduction410
14-2 Examples of an Impulse Response410
14-3 Impulse Response for the General Case412
14-4 Impulsive Response415
14-5 Impulse Excitation Occurring at t=T1418
14-6 Generalization of the"Laplace Transform"of the Derivative419
14-7 Response to the Derivative and Integral of an Excitation422
14-8 The Singularity Functions424
14-9 Interchangeability of Order of Differentiation and Integration425
14-10 Integrands with Impulsive Factors426
14-11 Convolution Extended to Impulse Functions428
14-12 Superposition430
14-13 Summary431
Problems433
Chapter 15.Periodic Functions435
15-1 Introduction435
15-2 Laplace Transform of a Periodic Function436
15-3 Application to the Response of a Physical Lumped-parameter System438
15-4 Proof That ?-1[P(s)] Is Periodic440
15-5 The Case Where H(s)Has a Pole at Infinity441
15-6 Illustrative Example442
Problems444
Chapter 16.The Z Transform445
16-1 Introduction445
16-2 The Laplace Transform of f*(t)446
16-3 Z Transform of Powers of t448
16-4 Z Transform of a Function Multiplied by e-at449
16-5 The Shifting Theorem450
16-6 Initial-and Final-value Theorems450
16-7 The Inversion Formula451
16-8 Periodic Properties of F*(s),and Relationship to F(s)453
16-9 Transmission of a System with Synchronized Sampling of Input and Output456
16-10 Convolution457
16-11 The Two-sided Z Transform458
16-12 Systems with Sampled Input and Continuous Output459
16-13 Discontinuous Functions462
Problems462
Appendix A465
Appendix B468
Bibliography469
Index471
热门推荐
- 1135202.html
- 2223276.html
- 73402.html
- 1945191.html
- 3334899.html
- 2620612.html
- 480257.html
- 2630537.html
- 2361347.html
- 2769546.html
- http://www.ickdjs.cc/book_899211.html
- http://www.ickdjs.cc/book_2695118.html
- http://www.ickdjs.cc/book_1486115.html
- http://www.ickdjs.cc/book_951383.html
- http://www.ickdjs.cc/book_3425240.html
- http://www.ickdjs.cc/book_2814162.html
- http://www.ickdjs.cc/book_2852269.html
- http://www.ickdjs.cc/book_3093136.html
- http://www.ickdjs.cc/book_2841790.html
- http://www.ickdjs.cc/book_607643.html