图书介绍

高等数学学习指导 2【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

高等数学学习指导 2
  • 王玲主编 著
  • 出版社: 武汉:华中科技大学出版社
  • ISBN:7560926746
  • 出版时间:2002
  • 标注页数:156页
  • 文件大小:6MB
  • 文件页数:166页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

高等数学学习指导 2PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 向量代数与空间解析几何1

一、基本要求1

二、内容精述1

(一)向量的概念1

(二)向量的运算2

(三)两向量间的关系2

(四)平面方程与两平面的关系2

(五)空间直线方程与两直线的关系3

(六)简单的二次曲面4

三、疑难解答4

四、范例选讲6

(一)向量的概念6

(二)求平面方程及平面间的位置关系8

(三)求直线方程及曲面方程10

五、自我检查题12

[参考答案]14

第二章 多元函数微分学16

一、基本要求16

二、内容精述16

(一)多元函数的基本概念16

(二)偏导数17

(三)多元复合函数的偏导数17

(四)全微分18

(五)多元函数的极值、最值18

三、疑难解答19

四、范例选讲21

(一)二元函数定义域及函数符号21

(二)二元函数的极限与连续性22

(三)偏导数23

(四)全微分25

(五)复合函数的偏导数26

(六)极值问题27

五、自我检查题28

[参考答案]30

第三章 多元函数积分学32

一、基本要求32

二、内容精述32

(一)二重积分的概念与性质32

(二)二重积分的计算及应用33

(三)三重符号分的概念、计算及应用34

(四)对弧长的曲线积分的概念、性质及应用36

(五)对坐标的曲线积分的概念、性质及应用37

(六)格林公式及其应用39

(七)对面积的曲面积分的概念、性质、计算及应用39

(八)对坐标的曲面积分的概念、性质及计算40

三、疑难解答41

四、范例选讲43

(一)二重积分的计算及应用43

(二)三重积分的计算及应用45

(三)曲线积分的计算47

(四)曲面积分的计算50

五、自我检查题51

[参考答案]54

六、自测题(第一、二、三章)56

[参考答案]57

第四章 无穷级数59

一、基本要求59

二、内容精述59

(一)数项级数59

(二)正项级数敛散性的判别法60

(三)任意项级数60

(四)幂级数的概念61

(五)幂级数的基本性质61

(六)将函数展开为幂级数61

三、疑难解答62

(七)傅里叶级数62

四、范例选讲64

(一)判别级数的敛散性64

(二)幂级数的有关概念67

(三)将函数展开为傅里叶级数68

五、自我检查题70

[参考答案]73

第五章 拉普拉斯变换75

一、基本要求75

二、内容精述75

(一)拉氏变换的概念75

(二)拉氏逆变换76

(三)卷 积及其求法76

(四)应用拉氏变换解微分方程(组)77

三、疑难解答77

(一)求拉氏变换79

四、范例选讲79

(二)求拉氏逆变换80

五、自我检查题82

[参考答案]84

六、自测题(第四、五章)85

[参考答案]87

第六章 行列式、矩阵与线性规划89

一、基本要求89

二、内容精述89

(一)行列式89

(二)矩阵91

(三)线性规划95

三、疑难解答96

四、范例选讲99

(一)行列式的计算99

(二)行列式的应用105

(三)矩阵的运算106

(四)求逆矩阵108

(五)解矩阵方程110

(六)矩阵的秩111

(七)解线性方程组113

五、自我检查题117

[参考答案]122

六、自测题(第六章)123

[参考答案]125

第七章 概率论基础126

一、基本要求126

二、内容精述126

(一)随机事件与概率126

(二)随机变量与概率分布128

(三)随机变量的数字特征129

三、疑难解答130

(一)事件之间的关系及运算132

四、范例选讲132

(二)古典概型与加法定理的应用133

(三)利用条件概率、乘法定理和事件的独立性136

(四)求分布律138

(五)根据概率分布求事件的概率139

(六)求随机变量的分布函数、概率密度及数学期望和方差140

五、自我检查题142

[参考答案]146

六、自测题(第七章)147

[参考答案]149

附录150

综合测试题(一)150

综合测试题(二)151

综合测试题(三)152

[参考答案]153

热门推荐