图书介绍

半导体器件导论【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

半导体器件导论
  • (美)尼曼(Neamen,D.)著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:7302124515
  • 出版时间:2006
  • 标注页数:670页
  • 文件大小:73MB
  • 文件页数:690页
  • 主题词:半导体器件-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

半导体器件导论PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 The Crystal Structure of Solids1

1.0 Preview1

1.1 Semiconductor Materials2

1.2 Types of Solids3

1.3 Space Lattices4

1.3.1 Primitive and Unit Cell4

1.3.2 Basic Crystal Structures6

1 3.3 Crystal Planes and Miller Indices7

1.3.4 The Diamond Structure13

1.4 Atomic Bonding15

1.5 Imperfections and Impurities in Solids17

1.5.1 Imperfections in Solids17

1.5.2 Impurities in Solids18

1.6 Growth of Semiconductor Materials19

1.6.1 Growth from a Melt20

1.6.2 Epitaxial Growth22

1.7 Device Fabrication Techniques:Oxidation23

1.8 Summary25

Problems27

CHAPTER 2 Theory of Solids31

2.0 Preview31

2.1 Principles of Quantum Mechanics32

2.1.1Energy Quanta32

2.1.2 Wave-Particle Duality Principle34

2.2 Energy Quantization and Probability Concepts36

2.2.1 Physical Meaning of the Wave Function36

2.2.2 The One-Electron Atom37

2.2.3 Periodic Table40

2.3 Energy-Band Theory41

2.3.1 Formation of Energy Bands41

2.3.2 The Energy Band and the Bond Model45

2.3.3 Charge Carriers—Electrons and Holes47

2.3.4 Effective Mass49

2.3.5 Metals,Insulators,and Semiconductors50

2.3.6The k-Space Diagram52

2.4 Density of States Function55

2.5 Statistical Mechanics57

2.5.1 Statistical Laws57

2.5.2 The Fermi-Dirac Distribution Function and the Fermi Energy58

2.5.3 Maxwell-Boltzmann Approximation62

2.6 Summary64

Problems65

CHAPTER 3 The Semiconductor in Equilibrium70

3.0 Preview70

3.1 Charge Carriers in Semiconductors71

3.1.1 Equilibrium Distribution of Electrons and Holes72

3.1.2 The no and po Equations74

3.1 3 The Intrinsic Carrier Concentration79

3.1.4 The Intrinsic Fermi-Level Position82

3.2 Dopant Atoms and Energy Levels83

3.2.1 Qualitative Description83

3.2.2 Ionization Energy86

3.2.3 Group Ⅲ-Ⅴ Semiconductors88

3.3 Carrier Distributions in the Extrinsic Semiconductor89

3.3.1 Equilibrium Distribution of Electrons and Holes89

3.3.2 The no po Product93

3.3.3The Fermi-Dirac Integral94

3.3.4 Degenerate and Nondegenerate Semiconductors96

3.4 Statistics of Donors and Acceptors97

3.4.1 Probability Function98

3.4.2 Complete Ionization and Freeze-Out99

3.5 Carrier Concentrations—Effects of Doping102

3.5.1 Compensated Semiconductors102

3.5.2 Equilibrium Electron and Hole Concentrations102

3.6 Position of Fermi Energy Level—Effects of Doping and Temperature109

3.6.1 Mathematical Derivation109

3.6.2 Variation of EF with Doping Concentratiion and Temperature112

3.6.3 Relevance of the Fermi Energy114

3.7 Device Fabrication Technology:Diffusion and Ion Implantation115

3.7.1 Impurity Atom Diffusion116

3.7.2 Impurity Atom Ion Implantation118

3.8 Summary119

Problems121

CHAPTER 4 Carrier Transport and Excess Carrier Phenomena128

4.0 Preview128

4.1 Carrier Drift129

4.1.1 Drift Current Density129

4.1.2 Mobility Effects132

4.1.3 Semiconductor Conductivity and Resistivity137

4.1.4 Velocity Saturation143

4.2 Carrier Diffusion145

4.2.1 Diffusion Current Density145

4.2.2 Total Current Density148

4.3 Graded Impurity Distribution149

4.3.1 Induced Electric Field149

4 3.2 The Einstein Relation152

4.4 Carrier Generation and Recombination153

4.4.1The Semiconductor in Equilibrium154

4.4.2 Excess Carrier Generation and Recombination155

4.4.3 Generation-Recombination Processes158

4.5 The Hall Effect161

4.6 Summary164

Problems166

CHAPTER 5 The pn Junction and Metal-Semiconductor Contact174

5.0 Preview174

5.1 Basic Structure of the pn Junction175

5.2 The pn Junction—Zero Applied Bias176

5.2.1 Built-In Potential Barrier177

5.2.2 Electric Field179

5.2.3 Space Charge Width183

5.3 The pn Junction—Reverse Applied Bias185

5.3.1 Space Charge Width and Electric Field186

5.3.2 Junction Capacitance189

5.3.3 One-Sided Junctions192

5.4 Metal—Semiconductor Contact—Rectifying Junction194

5.4.1The Schottky Barrier194

5.4.2 The Schottky Junction—Reverse Bias196

5.5 Forward Applied Bias—An Introduction197

5.5.1 Thepn Junction197

5.5.2 The Schottky Barrier Junction199

5.5.3 Comparison of the Schottky Diode and the pn Junction Diode201

5.6 Metal-Semiconductor Ohmic Contacts203

5.7 Nonuniformly Doped pn Junctions206

5.7.1 Linearly Graded Junctions206

5.7.2 Hyperabrupt Junctions208

5.8 Device Fabrication Techniques:Photolithography,Etching,and Bonding210

5.8.1 Photomasks and Photolithography210

5.8.2 Etching211

5.8.3 Impurity Diffusion or Ion Implantation211

5.8.4 Metallization,Bonding,and Packaging211

5.9 Summary212

Problems215

CHAPTER 6 Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor223

6.0 Preview223

6.1 The MOS Field-Effect Transistor Action224

6.1.1 Basic Principle of Operation225

6.1.2 Modes of Operation226

6.1.3 Amplification with MOSFETs226

6.2 The Two-Terminal MOS Capacitor227

6.2.1 Energy-Band Diagrams and Charge Distributions228

6.2.2 Depletion Layer Thickness235

6.3 Potential Differences in the MOS Capacitor239

6.3.1 Work Function Differences240

6.3.2 Oxide Charges244

6.3.3 Flat-Band Voltage245

6.3.4 Threshold Voltage247

6.3.5 Electric Field Profile254

6.4 Capacitance-Voltage Characteristics258

6.4.1 Ideal C-V Characteristics258

6.4.2 Frequency Effects263

6.4.3 Fixed Oxide and Interface Charge Effects264

6.5 The Basic MOSFET Operation268

6.5.1 MOSFET Structures268

6.5.2 Current-Voltage Relationship—Basic Concepts270

6.5.3 Current-Voltage Relationship—Mathematical Derivation282

6.5.4 Substrate Bias Effects287

6.6 Small-Signal Equivalent Circuit and Frequency Limitation Factors290

6.6.1Transconductance290

6.6.2 Small-Signal Equivalent Circuit291

6.6.3 Frequency Limitation Factors and Cutoff Frequency293

6.7 Device Fabrication Techniques296

6.7.1 Fabrication of an NMOS Transistor296

6.7.2 The CMOS Technology297

6.8 Summary299

Problems301

CHAPTER 7 Metal-Oxide-Semiconductor Field-Effect Transistor:Additional Concepts311

7.0 Preview311

7.1 MOSFET Scaling312

7.1.1 Constant-Field Scaling312

7.1.2 Threshold Voltage—First Approximation313

7.1.3 Generalized Scaling314

7.2 Nonideal Effects315

7.2.1 Subthreshold Conduction315

7.2.2 Channel Length Modulation318

7.2.3 Mobility Variation321

7.2.4 Velocity Saturation324

7.3 Threshold Voltage Modifications326

7.3.1 Short-Channel Effects327

7.3.2 Narrow-Channel Effects331

7.3.3 Substrate Bias Effects333

7.4 Additional Electrical Characteristics335

7.4.1 Oxide Breakdown335

7.4.2 Near Punch-Through or Drain-Induced Barrier Lowering335

7.4.3 Hot Electron Effects337

7.4.4 Threshold Adjustment by Ion Implantation338

7.5 Device Fabrication Techniques:Specialized Devices341

7.5.1 Lightly Doped Drain Transistor342

7.5.2 The MOSFET on Insulator343

7.5.3 The Power MOSFET345

7.5.4 MOS Memory Device348

7.6 Summary350

Problems352

CHAPTER 8 Nonequilibrium Excess Carriers in Semiconductors358

8.0 Preview358

8.1 Carrier Generation and Recombination359

8.2 Analysis of Excess Carriers360

8.2.1 Continuity Equations361

8.2.2 Time-Dependent Diffusion Equations362

8.3 Ambipolar Transport364

8.3.1 Derivation of the Ambipolar Transport Equation364

8.3.2 Limits of Extrinsic Doping and Low Injection366

8.3.3 Applications of the Ambipolar Transport Equation368

8.3.4 Dielectric Relaxation Time Constant376

8.3.5 Haynes-Shockley Experiment379

8.4 Quasi-Fermi Energy Levels382

8.5 Excess Carrier Lifetime385

8.5.1 Shockley-Read-Hall Theory of Recombination385

8.5.2 Limits of Extrinsic Doping and Low Injection387

8.6 Surface Effects389

8.6.1 Surface States389

8.6.2 Surface Recombination Velocity390

8.7 Summary391

Problems392

CHAPTER 9 The pn Junction and Schottky Diodes398

9.0 Preview398

9.1 The pn and Schottky Barrier Junctions Revisited399

9.1.1 Thepn Junction399

9.1.2 The Schottky Barrier Junction402

9.2 The pn Junction—Ideal Current-Voltage Relationship404

9.2.1 Boundary Conditions404

9.2.2 Minority-Carrier Distribution409

9.2.3 Ideal pn Junction Current411

9.2.4 Summary of Physics416

9.2.5 Temperature Effects418

9.2.6 The"Short"Diode420

9.2.7 Summary of Results422

9.3 The Schottky Barrier Junction—Ideal Current-Voltage Relationship423

9.3.1 The Schottky Diode423

9.3.2 Comparison of the Schottky Diode and the pn Junction Diode426

9.4 Small-Signal Model of the pn Junction428

9.4.1 Diffusion Resistance428

9.4.2 Small-Signal Admittance430

9.4.3 Equivalent Circuit432

9.5 Generation-Recombination Currents434

9.5.1Reverse-Bias Generation Current434

9.5.2 Forward-Bias Recombination Current437

9.5.3 Total Forward-Bias Current439

9.6 Junction Breakdown441

9.7 Charge Storage and Diode Transients446

9.7.1 The Turn-Off Transient446

9.7.2The Turn-On Transient449

9.8 Summary449

Problems451

CHAPTER 10 The Bipolar Transistor460

10.0 Preview460

10.1 The Bipolar Transistor Action461

10.1.1 The Basic Principle of Operation462

10.1.2 Simplified Transistor Current Relations466

10.1.3 The Modes of Operation468

10.1.4 Amplification with Bipolar Transistors470

10.2 Minority-Carrier Distribution472

10.2.1 Forward-Active Mode472

10.2.2 Other Modes of Operation480

10.3 Low-frequency Common-Base Current Gain483

10.3.1 Contributing Factors483

10.3.2 Mathematical Derivation of Current Gain Factors486

10.3.3 Summary and Review489

10.3.4 Example Calculations of the Gain Factors490

10.4 Nonideal Effects495

10.4.1 Base Width Modulation495

10.4.2 High Injection499

10.4.3 Emitter Bandgap Narrowing501

10.4.4 Current Crowding503

10.4.5 Nonuniform Base Doping506

10.4.6 Breakdown Voltage507

10.5 Hybrid-Pi Equivalent Circuit Model513

10.6 Frequency Limitations517

10.6.1 Time-Delay Factors517

10.6.2 Transistor Cutoff Frequency519

10.7 Large-Signal Switching522

10.8 Device Fabrication Techniques524

10.8.1 Polysilicon Emitter BJT524

10.8.2 Fabrication of Double-Polysilicon npn Transistor525

10.8.3 Silicon-Germanium Base Transistor527

10.8.4 The Power BJT529

10.9 Summary533

Problems535

CHAPTER 11 Additional Semiconductor Devices and Device Concepts546

11.0 Preview546

11.1 The Junction Field-Effect Transistor547

11.1.1 The pn JFET547

11.1.2 The MESFET551

11.1.3 Electrical Characteristics553

11.2 Heterojunctions560

11.2.1 The Heterojunction560

11.2.2 Heterojunction Bipolar Transistors564

11.2.3 High-Electron Mobility Transistor566

11.3 The Thyristor567

11.3.1 The Basic Characteristics568

11.3.2 Triggering the SCR570

11.3.3 Device Structures574

11.4 Additional MOSFET Concepts578

11.4.1 Latch-Up578

11.4.2 Breakdown580

11.5 Microelectromechanical Systems(MEMS)583

11.5.1 Accelerometers583

11.5.2 Inkjet Printing584

11.5.3 Biomedical Sensors584

11.6 Summary586

Problems587

CHAPTER 12 Optical Devices590

12.0 Preview590

12.1 Optical Absorption591

12.1.1 Photon Absorption Coefficient591

12.1.2 Electron-Hole Pair Generation Rate594

12.2 Solar Cells596

12.2.1 The pn Junction Solar Cell596

12.2.2 Conversion Efficiency and Solar Concentration599

12.2.3 The Heterojunction Solar Cell601

12.2.4 Amorphous Silicon Solar Cells603

12.3 Photodetectors605

12.3.1 Photoconductor605

12.3.2 Photodiode608

12.3.3 PIN Photodiode611

12.3.4 Avalanche Photodiode614

12.3.5 Phototransistor614

12.4 Light-Emitting Diodes616

12.4.1 Generation of Light616

12.4.2 Internal Quantum Efficiency616

12.4.3 External Quantum Efficiency618

12.4.4 LED Devices620

12.5 Laser Diodes622

12.5.1 Stimulated Emission and Population Inversion622

12.5.2 Optical Cavity625

12.5.3 Threshold Current627

12.5.4 Device Structures and Characteristics627

12.6 Summary629

Problems631

APPENDIX A Selected List of Symbols636

APPENDIX B System of Units,Conversion Factors,and General Constants643

APPENDIX C Unit of Energy—The Electron-Volt647

APPENDIx D "Derivation"and Applications of Schr?dinger's Wave Equation649

Index655

热门推荐